

Hayчная статья
Original article
УДК 004.652.4

РАЗРАБОТКА РЕЛЯЦИОННОЙ БАЗЫ ДАННЫХ ДЛЯ СИСТЕМЫ АВТОМАТИЗАЦИИ ТЕХНИЧЕСКОЙ ПОДДЕРЖКИ ПОЛЬЗОВАТЕЛЕЙ

DEVELOPMENT OF A RELATIONAL DATABASE FOR AUTOMATION SYSTEM OF TECHNICAL SUPPORT FOR USERS

Хмылев Кирилл Валерьевич, студент 2 курса магистратуры, факультет "Информатика и системы управления", МГТУ им. Н.Э. Баумана, Россия, г. Москва

Научный руководитель: Сотников Алексей Александрович

Khmylev Kirill Valerievich, 2nd year master's student, Faculty of Informatics and Control Systems, Moscow State Technical University. N.E. Bauman, Russia, Moscow Scientific adviser: Sotnikov Alexey Alexandrovich

Аннотация. Данная статья посвящена разработке реляционной базы данных для системы автоматизации технической поддержки. В рамках работы была проанализирована предметная область и выделены основные сущности, обладающие определенным набором свойств в рамках предметной области. В результате была разработана реляционная база данных для системы обработки сервисных событий с помощью РСУБД MS SQL Server 2019.

Abstract. This article is devoted to the development of a relational database for a technical support automation system. As part of the work, the subject area was

analyzed and the main entities that have a certain set of properties within the subject area were identified. As a result, a relational database was developed for the service event processing system using RDBMS MS SQL Server 2019.

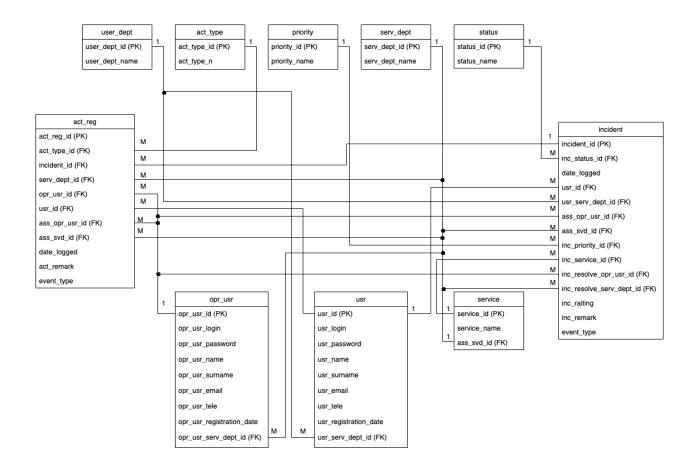
Ключевые слова: системы автоматизации, техническая поддержка пользователей, проектирование, разработка базы данных, реляционная база данных.

Keywords: automation systems, user technical support, design, database development, relational database.

Введение

В рамках работы было выделено 10 сущностей в ИС: Обращение (инцидент), действие по инциденту, пользователь ИС, группа пользователей, оператор ИС, группа операторов, статус, приоритет, тип действия инцидента, услуга. Каждая сущность независима, но информация передается между всеми. Пользователь ИС заводит обращение в ИС по выбранной им услуге. Назначенная группа операторов обрабатывает полученное обращение, выполняя определённые действия и формируя ответ на него. Пользователь получает ответ на созданное им обращение.

Продуманная структура и реализация информационной системы помогает добиться следующих целей:


- улучшить взаимодействие между службой поддержки и пользователями(клиентами);
- сократить время обслуживания инцидента;
- усовершенствовать процедуры отслеживания и отработки инцидентов;
- устранить ошибки, связанные с человеческим фактором;
- автоматизировать рутинные процессы;
- получать детальную статистику работы всего подразделения и каждого сотрудника.

Проектирование БД

Необходимо проанализировать предметную область и выделить основные сущности, обладающие определенным набором свойств в рамках предметной области. Для ИС были спроектированы 10 сущностей:

- 1) Incident таблица с данными об инцидентах;
- 2) Act_reg таблица с данными об действиях в инцидентах;
- 3) Usr таблица с данными об пользователях ИС;
- 4) User_dept таблица с данными об группах пользователей ИС;
- 5) Opr_usr таблица с данными об операторах ИС;
- 6) Serv_dept таблица с данными об группах операторов ИС;
- 7) Status таблица с данными о статусе инцидента;
- 8) Priority таблица с данными о приоритете инцидента;
- 9) Act_type таблица с данными о типе действия в инциденте;
- 10) Service таблица с данными об услугах ИС.

Проанализировав сущности, были выделены связи между ними, в результате получилась схема базы данных ИС. Данная схема БД представлена на рисунке 1.

Рисунок 1. Схема базы данных

Сущность incident состоит из полей:

- Incident_id первичный ключ, уникальный id инцидента;
- Inc_status_id статус инцидента, внешний ключ к таблице status;
- Date_logged дата регистрации инцидента;
- Usr_id id пользователя ИС, внешний ключ к таблице usr;
- Usr_serv_dept_id id группы пользователя ИС, внешний ключ к таблице user_dept;
- Ass_opr_usr_id id назначенного оператора на инцидент, внешний ключ к таблице opr_usr;
- Ass_svd_id id группы оператора, назначенного на инцидент, внешний ключ к таблице serv_dept;
- Inc_priority_id id приоритета инцидента, внешний ключ к таблице priority;
- Inc_service_id id услуги, выбранной пользователем ИС, внешний ключ к таблице service;
- Inc_resolve_opr_usr_id id оператора, решившего инцидент, внешний ключ к таблице opr_usr;
- Inc_resolve_serv_dept_id id группы оператора, решившего инцидент,
 внешний ключ к таблице serv_dept;
- Inc_raiting оценка решения инцидента, выставляемая пользователем (ограничение на значение оценки диапазон 1-5);
- Inc_remark описание инцидента;
- Event_type тип обращения. Сущность **act_reg** состоит из полей:
- Act_reg_id id действия, первичный ключ к таблице act_reg;
- Act_type_id тип действия, внешний ключ к таблице act_type;
- Incident_id id инцидента, внешний ключ к таблице incident;
- Serv_dept_id id группы оператора, выполнившего действие, внешний ключ к таблице serv_dept;

- Opr_usr_id id оператора, выполнившего действие, внешний ключ к таблице opr_usr;
- Usr_id id пользователя, выполнившего действие, внешний ключ к таблице usr;
- Ass_opr_usr_id id оператора, назначенного на инцидент, внешний ключ к таблице opr_usr;
- Ass_svd_id id группы оператора, назначенного на инцидент, внешний ключ к таблице serv_dept;
- Date_logged дата регистрации действия;
- Act_remark описание действия;
- Event_type тип инцидента в котором было выполнено действие. Сущность **opr_usr** состоит из полей:
- Opr_usr_id id оператора, первичный ключ к таблице opr_usr;
- Opr_usr_login логин УЗ оператора в ИС;
- Opr_usr_password пароль УЗ оператора в ИС;
- Opr_usr_name имя оператора;
- Opr_usr_surname фамилия оператора;
- Opr_usr_email email адрес оператора;
- Opr_usr_tele номер телефона оператора;
- Opr_usr_registration_date дата регистрации УЗ оператора;
- Opr_usr_serv_dept_id группа оператора, внешний ключ к таблице serv_dept.

Сущность **usr** состоит из полей:

- Usr_id id пользователя, первичный ключ к таблице usr;
- usr_login логин УЗ пользователя в ИС;
- usr_password пароль УЗ пользователя в ИС;
- usr_name имя пользователя;
- usr_surname фамилия пользователя;
- usr_email email адрес пользователя;

- usr_tele номер телефона пользователя;
- usr_registration_date дата регистрации УЗ пользователя;
- usr_serv_dept_id группа пользователя, внешний ключ к таблице user_dept. Сущность user_dept состоит из полей:
- user_dept_id id группы пользователя, первичный ключ к таблице user_dept;
- user_dept_name название группы пользователя.
 - Сущность **serv_dept** состоит из полей:
- serv_dept_id id группы оператора, первичный ключ к таблице serv_dept;
- serv_dept_name название группы оператора.
 - Сущность **act_type** состоит из полей:
- act_type_id id тип действия, первичный ключ к таблице act_type;
- act_type_n название типа действия.

Сущность **priority** состоит из полей:

- priority_id id приоритета действия, первичный ключ к таблице priority;
- priority_name название приоритета действия.
 - Сущность status состоит из полей:
- status_id id статуса действия, первичный ключ к таблице status;
- status_name название статуса действия.
 - Сущность service состоит из полей:
- service_id id услуги, первичный ключ к таблице service;
- service_name название услуги;
- ass_svd_id id группы операторов, автоматически назначаемой при регистрации инцидента.

Также в базе данных были выделены роли: роль пользователя, роль оператора.

Роль пользователя ИС стандартная:

- просмотр полей таблицы act_reg;
- просмотр и вставка полей в таблице incident.

Роль оператора зависит от его группы. Для примера были созданы две роли:

- Отдел бухгалтерии;
- Отдел канцелярии.

Отделу бухгалтерии разрешено:

- Просмотр, вставка, обновление полей в таблице act_reg;
- Просмотр, вставка, обновление полей в таблице incident. Отделу канцелярии разрешено:
- Просмотр, обновление полей в таблице act_reg;
- Просмотр, обновление полей в таблице incident.

Данные роли были созданы в БД с помощью среды управления БД - SQL Server Management Studio.

Разработка БД

Основные функции в ИС – действия над инцидентами, которые осуществляют пользователи и операторы. С помощью триггеров к таблицам act_reg и incident была реализована логика работы действий.

У каждого пользователя и оператора есть доступные действия для операций над инцидентом. Для пользователя:

- Действие «Оценить»;
- Действие «Предоставить дополнительную информацию»;
- Действие «Уточнить статус заявки».
 - Для оператора:
- Действие «Взять в работу»;
- Действие «Решить»;
- Действие «Открыть повторно»;
- Действие «Запрос дополнительной информации»;
- Действие «Отклонить»;
- Действие «Назначить».

Основные функции триггера act_reg_INSERT_UPDATE:

- Определение группы оператора по его id;
- Реализация действия «Взять в работу»;
- Реализация действия «Решить»;
- Реализация системного действия «Закрыть»;
- Реализация действия «Отклонить»;
- Реализация действия «Открыть повторно»;
- Реализация действия «Оценить».

 Основные функции триггера incident_INSERT_UPDATE:
- Автоматическое назначение ответственной группы-исполнителя по выбранному сервису пользователем;
- Автоматическое определение группы пользователя по его id.

Также были реализованы процедуры для регистрации инцидентов пользователем Incidents_registration() и процедура для запуска действий action().

Для группировки информации в виде отчётов удобно использовать представления БД. Для примера было разработано представление Rejected_incidents_last_week — отчёт отклонённых инцидентов за последнюю неделю. На рисунке 2 показан пример отчёта.

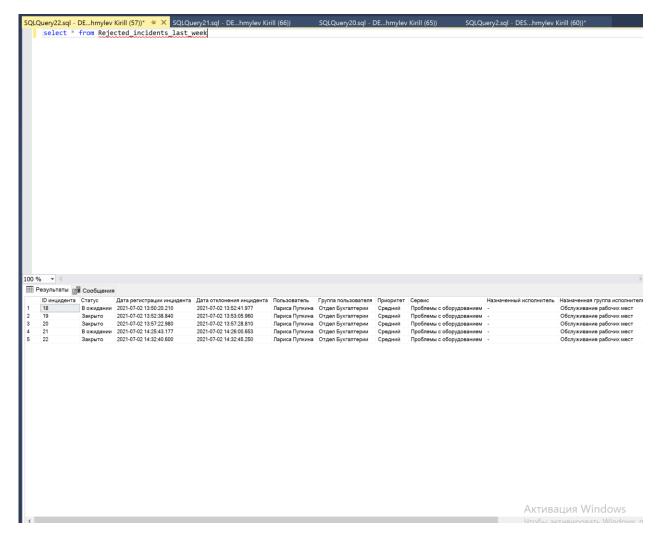


Рисунок 2. Пример отчёта, сформированного при выполнении представления Rejected_incidents_last_week

В результате работы был разработан портотип реляционной базы данных для системы обработки сервисных событий с помощью РСУБД MS SQL Server 2019.

Литература

- 1. Кляйн, Д. SQL. Справочник / Д. Кляйн
- 2. Петкович, Д. Microsoft SQL Server 2012. Руководство для начинающих
- 3. Лукин, В.Н. Введение в проектирование баз данных
- 4. Пирогов, В. Информационные системы и базы данных: организация и проектирование: Учебное пособие
- 5. Мейер М. Теория реляционных баз данных
- 6. Грабер, Мартин SQL для простых смертных / Мартин Грабер

References

- 1. Klein, D. SQL. Directory / D. Klein
- 2. Petkovic, D. Microsoft SQL Server 2012 Beginner's Guide
- 3. Lukin, V.N. Introduction to Database Design
- 4. Pirogov, V. Information systems and databases: organization and design: Textbook
- 5. Meyer M. Theory of relational databases
- 6. Graber, Martin SQL for mere mortals / Martin Graber

© Xмылев K.В., 2023 Научный сетевой журнал «Столыпинский вестник» 4/2023

Для цитирования: Хмылев К.В. РАЗРАБОТКА РЕЛЯЦИОННОЙ БАЗЫ ДАННЫХ ДЛЯ СИСТЕМЫ АВТОМАТИЗАЦИИ ТЕХНИЧЕСКОЙ ПОДДЕРЖКИ ПОЛЬЗОВАТЕЛЕЙ// Научный сетевой журнал «Столыпинский вестник» 4/2023